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Abstract Perinatal mortality in Germany was investigated with respect to a possible relationship to the
nuclear accident in Chernobyl on April 26,1986. Using annual data of perinatal mortality, a trend analysis
based on an appropriately chosen statistical model was performed which showed a significant increase in
1987. In addition, we calculated the cesium concentration in women's bodies using data of the cesium
concentration in milk. We found two peaks of cesium concentration that were associated with the observed
two peaks of monthly perinatal mortality data with a delay of 7 months.

Introduction

The explosion of the nuclear reactor in Chernobyl on April 26, 1986, was the most serious accident in the
history of civil use of nuclear power. Large territories in the Ukraine, Belarus, and Russia were highly
contaminated by the fallout. A variety of adverse health effects were observed there following the accident
[1]. In Belarus, an increased frequency of abnormalities in 5- to 12-week-old embryos from abortions was
reported after Chernobyl [2]. In a review article [3], studies from various European countries of the
association between the Chernobyl accident and reproductive outcome, with particular reference to
congenital anomalies, are summarized. The authors conclude that there is no consistent evidence of a
detrimental physical effect of the Chernobyl accident on congenital anomalies.

A significant increase of early neonatal mortality (first 7 days) after the fallout was reported for southern
Germany [4]. The authors had compared monthly mortality data for 1986 and 1987 with the extrapolated
trend from the years1975 to 1985. The methods were criticized [5], which in turn motivated this work.

Schoetzau et al. [6] compared the rates of abnormalities and perinatal mortality in southern Bavaria with
those in northern Bavaria, where the cesium contamination was less. They did not find a significant
difference for the 2 years following the Chernobyl accident. However, the populations are relatively small,
so the power of the applied statistical test did not allow them to detect small differences.

We report a new evaluation of the German data also using a trend analysis, but with a statistical model
different from that in [4] and with data ranging from 1980 to 1993. Thus, a possible increase of the perinatal
mortality rate in 1987, the year after the Chernobyl accident, can now be checked by an appropriate
statistical test substantially different from a pure trend extrapolation.

Whereas in [4] only early neonatal mortality data were used, our analysis includes the data of stillborn
infants, i.e., perinatal mortality data. Data from the former German Democratic Republic (East Germany) are
added to broaden the database.

A possible association between radiation from cesium and perinatal mortality rates was checked by
evaluating the monthly data. In the first follow-up year, the main radioactive burden from Chernobyl came
from ingestion, mainly from cesium in milk and dairy products [7]. As the fetus is considered to be most
sensitive to radiation during the period of major organogenesis in the first trimester after conception [8], an
increased perinatal mortality rate should, if anything, be observed 6-9 months after exposure. We therefore
include in our model the delayed cesium concentration as a further covariate in addition to the trend
components.

Materials and methods

The statistical analyses are based on annual as well as on monthly data of perinatal mortality in West
Germany (former FRG) and in East Germany (former GDR). The data were provided by the Statistisches
Bundesamt in Wiesbaden and Berlin. The perinatal mortality rate is defined as the number of stillbirths plus
the number of infant deaths within 7 days of birth, divided by the total number of births (live plus stillbirths).

The classification of 'stillbirth' was changed in 1979 from 'body length greater than 35 cm' to 'birthweight
greater than 1000 g’ Therefore, 1980 was chosen as the starting point for our data evaluation. Data were
available until 1993, so the data ranged over 14 years. Since the same classification was used in the former



GDR and the general trend of perinatal mortality is similar in the study period, the two data sets can be
combined for a joint evaluation even for the years before the reunification of East and West Germany in
1990.

We first performed a trend analysis of the annual perinatal mortality rate, where the possible increase in 1987
was modeled by an additional term. For the monthly data, we applied a regression approach with the delayed
radioactive exposure as an additional explanatory variable. When deriving the model for the monthly data,
we took into account that in the first year following the accident, the main contribution to the radioactive
exposure of the German population came from cesium in food [7], mainly milk and dairy products. The
cesium concentration in milk reached several hundred Bg/1 immediately after the accident, but it dropped
quickly to negligible values due to the rapid grass growth. During the winter feeding period, however, the
concentration level increased again, as the cows were fed contaminated grass harvested the preceding
summer. After the winter feeding period, in April 1987, the cesium concentration in milk dropped to about 1
Bq/1. Thus, the main dose received from ingestion was limited to the first follow-up year. We used cesium
concentration data measured in milk from a farm near Munich and assumed a biological half-life of cesium
in the human female body of 86 days and constant daily milk consumption to calculate the course of cesium
concentration in the mothers. Two peaks are found, one in mid-1986, the other at the end of April 1987, one
year after the accident (Fig. 1). A similar calculation for the cesium concentration after beef consumption
shows a first peak in August 1986 and a second in April 1987, but beef plays a minor role compared with
milk. Therefore, we focused our investigation on cesium in milk. The concentration in the mothers is only
known up to a constant factor as it was calculated using milk data from just one test farm near Munich.

As mentioned above, a standard technique for analyzing such data consists in conducting a trend analysis.
Thus, the first step of our analysis concerns the model fit to the annual data. The data suggest a nonlinear
regression model with an exponential trend and a constant term as follows:

(1) EX®) =atexp(@tpit)

where E(Y(t)) is the expected perinatal mortality rate in year t with t ranging from 1 to 14, t = 1 representing
1980. Denoting the number of births in year t by N(t), the random variable Y (t)-N(t) is binomially distributed
with

Var(Y(0)=E(Y (1))-(I - E(Y (1)) / N(t)

Model (1) above is justified as follows. On the one hand, it reflects the trend apparent in the data, which
displays a decrease in the perinatal mortality rate from 1980 to 1993 by about a factor of 2. This trend, given
by f; t, is essentially due to better medical care. The exponential term, however, yields an expected perinatal
mortality rate of zero for time t tending to infinity. This effect is compensated, on the other hand, by
introducing the additional parameter a which allows for a natural limit of perinatal mortality for reasons
other than medical care. It is also worth mentioning that for practical purposes, the exponential term of the
model is identical to a logistic one which is typically applied in such fields of investigation.

We further allow for random deviations from the exact trend by introducing an unknown random effect u(t)
to model (1), so the expected mortality rate conditioned on u(t) is expressed as follows

(Ia)  E(Y(V) |u(t) = o+ exp (Bo + 1 1) +u(t)

Following [9], we assume E(u(t)) = 0 and Var(U(t)) = p> E(Y(t)) (1-E(Y(t))) for the random effect, where p’
is an unknown constant. These assumptions mean that u(t) does not yield a systematic deviation from the
trend and that its variance is essentially proportional to E(Y(t)).This implies that the unconditional expected
mortality is still the same as in model (1). Noting that the sample sizes in each year are nearly the same in
our data, the variance of Y(?) can be calculated as

(2)  Var(Y(t)) =OD-E(Y(1))-(1 - E(Y(1)) / N(t)

where OD is the so-called overdispersion factor which depends on p” and has to be estimated from the data
(for a detailed derivation see [9], p. 192ff). Overdispersion results in an observed variance of the response
variable Y(t) greater than it should be under the assumed binomial model. Since overdispersion is a common
problem in practical situations, 'it seems wise to be cautious and to assume that overdispersion is present to
some extent unless and until it is shown to be absent' (see [10], p. 125). Ignoring the effect of overdispersion
can lead to seriously misleading results, because in that case. among others, the calculated standard errors of
the point estimators of the model parameters will be too small.



In the next step, the model has to be slightly modified to take into account a possible change in the perinatal
mortality rate in 1987. This is done by introducing an additional term in model (1):

(3) E(Y(1)) = a +exp (Bo + B1 1) + B2 Lioga(t)
with I;9g7(t) = 1 for t = 8. i.e., in 1987, and zero otherwise. Our hypothesis of an increased perinatal mortality

rate in 1987 can thus be checked by a statistical test (one-sided t-test) of 5, i.e., the null hypothesis of £, <0
has to be tested versus the alternative £, > 0.

Using now the monthly data on perinatal mortality as the response variable, we consider the following
model:

@) E(Y(V)=oa+exp (Bo+ B 1) + B2 cosn(2t — i) + By (x(t = )

where ¢ represents the time measured in years. As the data suggest a seasonal effect with a period of half a
year, a periodic term with parameters f, and f; is introduced in model (3). To model the influence of
radiation on perinatal mortality, the term f8, (x(t — f5)) 7’ is added. The variable x( — f5) denotes the cesium
concentration in the human body at time 7 — 5. Parameter 4 represents the time-lag to be estimated from the
data.

We are now concerned with adequate methods for the statistical inference. Model (3) with (2) and model (4)
with (2), respectively, are quasi-likelihood models (see e.g. [11, 12]). The distribution of Y(t) can be well
approximated by a normal distribution, because the population sizes N(?) are very large. Estimates of the
parameters are obtained by the method of iteratively weighted least squares. In model (4), it is also necessary
to minimize the profile likelihood depending on the parameter S5 by a grid search. The factor OD can be
estimated by the standardized sum of weighted least squares.

Statistical tests for the influence of certain parameters in each model can be performed by the F-test using

SSE,-SSE,)/p
SSE\/(T-q)

where SSE; and SSE, denote the weighted sum of squares under the full model and under the null
hypothesis, respectively. Here p is the number of parameters to be tested, T is the number of observed
mortality rates (7= 14 for the annual data and 7 = 168 for the monthly data), ¢ the number of parameters in
the full model, and T - g the degrees of freedom. The expression in the denominator is the estimator of OD.
Based on this test statistic, confidence intervals can be constructed for single parameters using the
relationship between tests and confidence intervals. For this purpose, the so-called profile sum of squares
(SSE; as a function of the parameter of interest) has to be calculated. An alternative for testing a single
parameter consists in calculating the Wald confidence intervals (¢-test). Note that these two test procedures
differ since our model is nonlinear. The F-test has the advantage of being less sensitive to non-linearity ([12],
p. 1911f.), while the t-test can be conducted one-sided. Finally, OD is tested, with SSE; being approximately
¥’ (T — q)-distributed under the null hypothesis OD = 1.

Results
Annual Data

In Fig. 2, the observed annual perinatal mortality rates and the estimated regression curve (with £, = 0) are
plotted. It can be seen that the estimated curve is very close to the observed values. The data point with the
greatest deviation from the curve is the observed mortality rate in 1987, which reflects the significance of the
parameter 3, shown by the corresponding #-test mentioned below.

Conducting the regression analysis based on model (2) yields an estimated value of a of 0.0030 which turns
out to be significantly different from zero at the 1 % level (F-test). The parameters fyand S, are estimated as
-4.7 and -0.10, respectively. The OD resulting from the data is 1.6. Though this value is not significantly
different from 1, we use it for the analyses, i.e., the covariance matrix of the estimated parameters is inflated
by 1.6 before investigating the null hypothesis of no increase in 1987. Taking this overdispersion into
account, the results obtained from the calculated statistical tests are more conservative, i.e., the P values are
larger than they would if we ignored the overdispersion. Now, the null hypothesis of no increase in 1987 can
be checked by testing the hypothesis of 5, < 0 versus the alternative of 5, > 0. Estimating /3, results in 0.36
per thousand (¢ value = 2.8), which is significantly greater than zero (P< 0.01, ¢-test). This increase translates
to 317 additional perinatal deaths in 1987 with a 95% confidence region ranging from 65 to 569.



Monthly Data

The parameter estimates for the trend parameters a (0.0030), Sy (-4.7). and f; (-0.10) are equal to those
obtained from estimating model (2) with the annual data. The two parameters of the seasonal component £,
and f; are estimated as 0.00030 and 0.86, with f, being significantly different from zero (F-test, P < 0.001).
The importance of the seasonal component can also be seen from the weighted sum of squares, which is
226.3 with the seasonal component and 298.4 without it. Figure 3 displays the monthly perinatal mortality
data from 1980 to 1993 and the result of the fit to the monthly data.

The main result of fitting model (3), however, is the highly significant effect of the delayed cesium
concentration on perinatal mortality. Including the cesium term in the model leads to a reduction of the
weighted sum of squares from 222.6 to 200.0. The corresponding F-test is highly significant (P < 0.001).
The regression yields f5 = 3.5 (95% confidence interval: 1.5 - 7.5). Thus, the excess perinatal mortality is a
strongly nonlinear function of the cesium concentration at very small dose rates.

In Fig. 4, the profile sum of squares as a function of the time-lag (parameter f) is plotted. The minimum of
the sum of squares is obtained for a time-lag of 7 months. The broken line gives an estimate of the 95%
confidence interval from 6 to 8 months based on the F-test.

In Fig. 5, the residuals resulting from the regression, i.e., the deviations between observed and expected
monthly perinatal mortality rates, are presented for the models with and without the delayed cesium term in
units of standard deviations. Without the cesium term, the moving average exhibits two peaks, one in the
beginning and one at the end of 1987, which are no longer present when the model is adjusted for cesium.
The greatest monthly deviation from the model without cesium is found in November 1987, where perinatal
mortality is increased by 1.5 per thousand, which means a relative increase of 20%.

OD is now estimated as 1.25, indicating that the model fits remarkably well.

Discussion

Summarizing the above results, we find a significant increase of German perinatal mortality in 1987, the year
following the Chernobyl accident. The model which was used for the data analysis fit the data very well (cf.
Fig. 1). We furthermore analyzed the monthly data and noticed a highly significant association between
cesium concentration and excess perinatal mortality rates. Although we know that, in general, such an
observational study cannot prove a causal relationship, we feel that the results deserve further attention.

Thus, for instance, their biological plausibility has to be discussed. The dose rates received by the embryo
from internal cesium radiation were of the order of the background radiation. The doses were 2 to 3 orders of
magnitude smaller than in animal experiments [13,14]. The consequence of adopting the radiation
explanation would be that there is either no threshold dose for radiation damage to the human embryo or the
threshold is smaller than the additional exposure in Germany after Chernoby]l.

After the atmospheric bomb testing in the 1960’s, an increased first-day neonatal mortality was observed in
USA and in England and Wales [15]. Then millions of individuals over many years were exposed to ionizing
radiation, mainly from strontium in the food that accumulates in the human bones. With the fallout from
Chernobyl, a similar amount of fission products contaminated Germany within just a few days. However, in
Germany, in contrast to the atmospheric tests, strontium played a minor role in the Chernobyl fallout
compared with cesium. While the biological half-life of strontium in humans is many years, for cesium it is
only some months. This is why the development of the cesium concentration in the human body after
Chernobyl shows two marked peaks which could both be correlated with the observed two peaks of perinatal
mortality in the beginning and at the end of 1987.

Further confirmation of our findings could come from evaluating monthly perinatal data from countries
nearer to Chernobyl such as Poland, Belarus, and Ukraine which, to our knowledge, has not yet been done.
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Fig. 1 Cesium concentration in milk (dots) and in the female human body (solid line)
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Fig. 2 Observed annual perinatal mortality rate in Germany and estimated trend curve
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Fig. 3 Observed monthly perinatal mortality rate in Germany and estimated model curve
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Fig. 4 Weighted sum of squares resulting from regressions to monthly German perinatal mortality data with
different time-lags between cesium concentration in the femals body and perinatal mortality data. The best fit
is obtained for a time-lag of seven months. The broken line yields the 95% confidence interval which ranges
from 5.5 to 8.5 months.
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Fig. 5 Residuals from regressions to monthly perinatal mortality data (dots) without (upper diagram) and

with (lower diagram) the cesium term. The solid line is the moving average of the residuals, the broken line
indicates the range of two standard deviations (2c-range).



